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Synchronization using dynamic coupling
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A systematic coupling procedure is introduced for synchronizing arbitrary chaotic dynamical systems. This
coupling exploits the existing contraction properties of the flow and surpresses divergence only along those
directions in state space, where the underlying flow is not contracting. In this way, systems can be synchro-
nized using a minimum of transmitted information for guaranteed high-quality synchronization. Applications
in combination with sporadic driving and in partitioned state spaces are numerically illustrated.
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Synchronization of periodic signals is a well-known ph
nomenon in science and engineering, and even chaotic
tems may be coupled in a way such that their oscillations
synchronized@1#. If the coupled systems are very similar
~almost! identical, their state vectorsx andy converge during
a synchronization transient to the same~chaotic! trajectory.
The fact that chaotic systems may synchronize despite t
sensitive dependence on initial conditions can be explai
by a surpression of expanding dynamics in state space tr
versal to the synchronization manifoldx5y due to the cou-
pling. Conventional coupling schemes are mainly based
global coupling forces and make no systematic use of
contraction properties of the underlying flow. We introdu
in the following, a way to design a coupling for arbitra
pairs of ~identical! systems that suppresses exponential
vergence of the dynamics of the synchronization errorx2y,
and fully exploits the contraction properties of the flow
the given systems.

Dynamic coupling.We shall introduce the dynamic cou
pling scheme, first for discrete dynamical systems, and t
for continuous systems. Let

xn115 f ~xn! and yn115 f ~yn!

be two identicalm-dimensional chaotic dynamical system
that we want to synchronize by means of a suitable coup
mechanism. Since the systems are assumed to be ch
any pair of orbits$xn% and$yn% starting at closely neighbor
ing initial conditions$x0% and $y0% will ~exponentially! di-
verge. As long as the distance between the orbits is smal
evolution of the synchronization erroren5yn2xn is gov-
erned by the linear system

en115Df ~yn!•en ,

where Df (yn) denotes the Jacobian matrix off at yn . The
increase of the erroren , i.e., the divergence of orbits can be
be analyzed and described in terms of the singular va
decomposition~SVD! of the Jacobian matrix

Df 5U•W•Vtr ,
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whereU andV are orthogonal matrices andW5diag(wi) is
a diagonal matrix with positive elementswi , the singular
values~SVs! of Df . The matrix Df (yn) depends on the cur
rent state as the matrices of the SVD do, but here, and in
following, we shall indicate this dependence explicitly on
in cases where misunderstandings have to be avoided. L
assume now that atyn locally k noncontracting directions
exist, that are given by the column vectorsv1 , . . . ,vk of the
matrix V with corresponding SVsw1 , . . . ,wk>1. Our goal
is to design a coupling matrixC5C(yn) that surpresses th
local expansion of the flow along these directions. We sh
first consider the case of unidirectional coupling where
desired coupling can be written as

yn115 f ~yn!1C~xn2yn!, ~1!

yielding an error dynamics

en115@Df 2C#en .

Choosing

C5U•diag~w1 , . . . ,wk ,0, . . . ,0!•Vtr , ~2!

the matrix Df 2C governing the error dynamics is given b
U•diag(0, . . . ,0,wk11 , . . . ,wm)•Vtr and thus possesse
only SVs that are smaller than one. The choice of this ma
C guarantees the linear stability of the synchronized st
Using this coupling matrixC, the coupling term can be re
written

C@xn2yn#5(
i 51

k

wi@^xn ,vi&2^yn ,vi&#ui , ~3!

where^,& denotes the standard scalar product. Ifyn is close
to xn , the matrixV(yn) of the SVD of Df (yn) can be ap-
proximated@2# by the matrixV(xn) of the SVD of Df (xn),
and we obtain thedynamic coupling

xn115 f ~xn!,

yn115 f ~yn!1(
i 51

k

wi@si~xn!2si~yn!#ui , ~4!
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based oni 51, . . . ,k scalar signalssi(xn)5^xn ,vi(xn)& and
si(yn)5^yn ,vi(yn)&. The same reasoning yields for bidire
tional coupling the scheme

xn115 f ~xn!1
1

2 (
i 51

k

wi~xn!@si~yn!2si~xn!#ui~xn!,

yn115 f ~yn!1
1

2 (
i 51

k

wi~yn!@si~xn!2si~yn!#ui~yn!.

For continuous dynamical systems, a similar result can
derived starting again from two uncoupled systems:

ẋ5 f ~x! and ẏ5 f ~y!.

The evolution of the distancee5y2x between two neigh-
boring orbits is given by the linearized equation

ė5D f ~y!•e. ~5!

For a small time stepDt, the solution of Eq.~5! may be
approximated bye(Dt)5A•e(0), where A(Dt)5I 1DtD f
is an approximation of the linearized flow of the systemI
denotes the identity matrix, ande(0) is the initial condition.
SVD of A(Dt)5U•W•Vtr provides SVswi(Dt) of A(Dt)
that may be interpreted in the same way as the SVs of
linearization of discrete systems, but still depend on the~ar-
bitrary! time stepDt. To eliminate this dependence onDt,
we consider

Atr
•A5I 1Dt~D f tr1D f !1Dt2D f tr

•D f .

Neglecting terms of higher order inDt and defining

B5D f tr1D f ,

we obtain I 1DtB5Atr
•A5V•W2

•Vtr and thus B
5V•D•Vtr with D5diag(d1 , . . . ,dm)5(W22I )/Dt. The
diagonal elementsdi are the eigenvalues of the matrixB.
Solving for the SVs of A(Dt), we obtain wi(Dt)
5A11Dtdi . Contraction withwi,1 thus occurs for those
directions wheredi,0. This stability criterion will now be
forced by introducing a suitable~unidirectional! coupling

ẏ5 f ~y!1C~x2y!.

The coupling matrixC has to be chosen in a way that a
eigenvalues of

B̃5D f tr2Ctr1D f 2C5B2~Ctr1C!

are negative. This goal can be achieved using a symm
matrix C that manipulates all non-negative eigenvalu
d1 , . . . ,dk>0 of B:

Ctr1C52C52V•diag~c1 , . . . ,ck,0, . . . ,0!•Vtr

with ci.di /2 for i 51, . . . ,k. This yields a matrixB̃ with
negative SVs and results in the following coupling term:
05520
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C~x2y!5(
i 51

k

ci@^x,vi&2^y,vi&#vi ,

wherevi denotes again the column vectors of the orthogo
matrix V. Hence the coupling term is expressed in terms
some constantsci.di /2 that are related to the non-negativ
eigenvaluesdi of B5D f tr1D f and the corresponding
eigenvectorsvi , and depends in this way on the Jacobian
the vector fieldD f along the orbit.

An analysis for bidirectionally coupled continuous sy
tems yields the same form of the coupling matrix except t
only half of the coupling strength for unidirectional is ne
essary to stabilize the synchronized state.

Hénon map.To demonstrate the efficiency of the pro
posed coupling~4!, we shall now consider them52 dimen-
sional Hénon map:

xn11
1 512a~xn

1!21bxn
2 ,

xn11
2 5xn

1 ,

with a51.4 andb50.3. The SVs of the Jacobian

D f ~xn!5S 22axn
1 b

1 0
D

are given by the square roots of the eigenvalues of the ma
(D f ) tr

•D f and thus depend onx1 only. For the first, SV
holds w1>1, indicating expansion except forx150. Since
w2<b,1 for all x1, only a single noncontracting directio
exists and the dynamic coupling is given by the scalar sig
s1(xn)5^xn ,v1(xn)&.

In order to avoid numerical artifacts, white noise~uni-
formly distributed random numbers! of amplitude 10212 is
added to the dynamical variables during all following sim
lations. Furthermore, the He´non map possesses not only th
chaotic Hénon attractor we want to study, but also orbits th
diverge. Unfortunately, the chaotic He´non attractor is located
quite close to the basin of this coexisting attractor at infini
Therefore, the coupling is not applied in those cases whe
would kick the driven system towards a diverging solutio

The first question we want to address with the He´non
example is how much the approximation of the local singu
values and vectors at the response system degrades the
formance of this coupling. For this purpose we have co
pared the coupling given in Eq.~4! with a corresponding
coupling~3! withoutapproximations. Figure 1 shows the d
crease of the synchronization errore5ix2yi as a function
of time n for the proposed dynamic coupling using only
scalar time seriess1(xn) ~solid curve! and the ideal dynamic
coupling ~dotted curve!, where the vectorv1(xn) also has to
be transmitted to the response system. As can be seen
for synchronization errors below 1024, both curves are sig-
nificantly different and the convergence of the proposed c
pling ~4! becomes slower than that of the ideal coupling~3!.

The efficiency of dynamic coupling allows for deactiva
ing the coupling from time to time in order to reduce th
information flow from the drive to the response system. W
shall now discuss two ways to exploit this feature.
4-2
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Sporadic driving.An obvious way to reduce the informa
tion flow from drive to response issporadic driving @3#,
where T iterations are performed before the next coupli
signal is computed from the current state and transmitte
the response system where it is applied in the coupling.
ing dynamic coupling~4! for the Hénon system, synchroni
zation in terms of negative conditional Lyapunov expone
occurs forT<7, and high quality synchronization, withou
intermittent bursts of the synchronization error@4,5#, can be
achieved withT<5. Thus only every fifth iterate of the
Hénon map has to transmitted as a coupling signal to
response system, reducing the information flow consid
ably. Note that the commonly used coupling signals5x1

2 for
the Hénon map has to be applied for each iteration to gu
antee high-quality synchronization.

Partition based coupling.Another way to reduce the in
formation flow of the dynamic coupling is motivated by th
observation that the singular valueswi of Df (xn) depend, in
general, on the statexn . Therefore, one may restrict the co
pling to those regions in the state space where strong ex
sion has to be surpressed. Since for the He´non map the larg-
est SV is a function of the first state componentx1, only
~with a local minimum atx150) one may activate coupling
only if ux1u.xc.0, or equivalently, ifw1.wmin . Figures
2~a! and 2~b! show the resulting largest condition
Lyapunov exponent versus the coupling thresholdwmin and
the percentage of iterations where coupling is activated,
spectively. Figure 2~c! shows a histogram of the number
iterations between activation of the coupling forwmin52.8.

The dynamic coupling as defined in Eq.~4! requires the
repeated computation of the SVD of the Jacobian at differ
states. To avoid these computations, one may partition
state space such that in each cell the required singular va
and vectors are approximated by their average values in
particular cell, which are stored in a database. The numbe
necessary cells depends, of course, on the dynamical sys
In the case of the He´non map, we achieve synchronizatio
using a dynamical coupling based on a coarse partition w
232 cells. Furthermore, one may restrict coupling again
those cells of the partition that are visited with a high pro
ability and/or possess large SVs. Figure 3 shows a parti
with 20320 cells. High-quality synchronization is alread

FIG. 1. Synchronization errore5ix2yi vs time n of the dy-
namic coupling~solid curve! and the ideal dynamic coupling~dot-
ted curve!.
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achievd if the ten most important cells~plotted as black and
dark gray squares! are used in the coupling. For selectin
these ten cells, the invariant measuresm(Ci j ) of all cells
have been estimated and multiplied with the largest lo
singular valuew1. The ten cells possess the largest S
weighted measures and cover about 25% of the total inv
ant measure. If instead of cell number ten, the 11th cell~ac-
cording to our ordering! is used for implementing the
coupling, strong intermittent bursts of desynchonization
cur. Therefore, the proper location of cells is crucial wh
using a small number of coupling cells, only. Using a co

FIG. 2. Largest conditional Lyapunov exponentlc vs SV
thresholdwmin ~a! and vs percentage of iterations where coupling
active ~b!. ~c! Histogram of the numberTu of iterations between
two subsequent coupling events.

FIG. 3. Black squares indicate the location of cells where
dynamic coupling is activated.
4-3
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mon start cell~to avoid long transients! and the configuration
of coupling cells as a~discrete! key, one may in this way
devise communication protocols where between the coup
signals encoded messages are transmitted that can b
coded using the state of the synchronized response syst

Coupling partitions may also be used with other coupl
schemes. Furthermore, partitioning and constant approx
tions of singular values and vectors can also be combi
with sporadic driving. In this case, coupling is activated e
actly afterT iterations regardless of the current cell. Simu
tions with the He´non map showed that for a partition wit
20320 cells, sporadic driving withT<5 leads to high qual-
ity synchronization.

Delay embedding.A drawback of the coupling scheme~4!
is the fact that for each noncontracting direction, a coupl
signal si(xn) ( i 51, . . . ,k) is required. To avoid the trans
mission of suchk-dimensional coupling vectors, we sha
extend the coupling now by some delay embedding pro
dure @6#. Let h(xn) be a scalar observable such that t
d-dimensional embedding pn5„h(xn),h+ f 21(xn), . . . ,h
+ f 12k(xn)… fulfills Takens’ theorem@7#. Then a diffeomor-
phic delay embedding mapF exists that mapsxn to pn
5F(xn) and yn to qn5F(yn)5„h(yn),h+ f 21(yn), . . . ,h
+ f 12k(yn)…. Taylor expansion of the inverseF21 yields for
neighboring statesxn andyn

xn2yn'DF21~qn!•~pn2qn!, ~6!

whereDF21(qn) denotes the~pseudo! inverse of the Jaco
bian matrixDF of F. The matrixDF can be computed ex
plicitly for given functions h and f, and for its inversion
again, SVD may be used yieldingDF5UF•WF•VF

tr and
DF215VF•WF

21
•UF

tr . Substituting Eq.~6! for the differ-
ence of states in Eq.~1!, we obtain a coupling that depend
on the present and past values of the scalar coupling si
sn5h(xn) entering the delay vectorpn :
ta
as

ex
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yn115 f ~yn!1C•DF21~qn!•~pn2qn!.

Here the coupling matrixC is designed as given in Eq.~2! to
force convergence, and the matrixDF21 is used to translate
differences of states from the reconstruction space to
original state space. In a similar way, bidirectional coupli
may be defined, and for continuous systems, one could
use derivative coordinates.

Conclusion.A systematic coupling scheme has been p
sented that exploits ideally the contraction properties of
underlying flow and ensures linear stability of the synch
nized state in all points of the state space. This approac
similar in spirit, but conceptionally different from othe
methods for chaos control and observer design@1,8#. Besides
coupling using expansion directions given by singular v
tors, we have also investigated schemes based on uns
eigenvectors. A comparison showed that the SVD-ba
coupling presented in this Rapid Communication is supe
to methods using eigenvalues and eigenvectors.

Information about the local expanding directions can g
important hints for the design of a global coupling functio
because it allows one to locate regions in the state sp
where a given coupling signal or scheme may fail due
strong expansion rates. On the other hand, an analysi
local expansion can also be used to evaluate the suitabilit
a given coupling signal for synchronization of two system
Only if this signal contains significant components along
expanding direction during the time evolution, will it lead
synchronization when used in some~arbitrary! coupling
mechanism.
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